Exercise 68

(a) Use a graph to estimate the absolute maximum and minimum values of the function to two decimal places.
(b) Use calculus to find the exact maximum and minimum values.

$$
f(x)=x-2 \cos x, \quad-2 \leq x \leq 0
$$

Solution

Take the derivative of the function.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}(x-2 \cos x) \\
& =\frac{d}{d x}(x)-2 \frac{d}{d x}(\cos x) \\
& =(1)-2(-\sin x) \\
& =1+2 \sin x
\end{aligned}
$$

Set $f^{\prime}(x)=0$ and solve for x.

$$
\begin{gathered}
1+2 \sin x=0 \\
\sin x=-\frac{1}{2} \\
x=-\frac{\pi}{6}+2 \pi n \quad \text { or } \quad x=-\frac{5 \pi}{6}+2 \pi n, \quad n=0, \pm 1, \pm 2, \ldots
\end{gathered}
$$

Only $x=-\pi / 6$ is within the interval $-2 \leq x \leq 0$. Evaluate the function here.

$$
f\left(-\frac{\pi}{6}\right)=\left(-\frac{\pi}{6}\right)-2 \cos \left(-\frac{\pi}{6}\right)=-\frac{\pi}{6}-\sqrt{3} \approx-2.25565 \quad \text { (absolute minimum) }
$$

Evaluate the function at the endpoints.

$$
\begin{aligned}
f(-2) & =(-2)-2 \cos (-2)=-2(1+\cos 2) \approx-1.16771 \quad \text { (absolute maximum) } \\
f(0) & =(0)-2 \cos (0)=-2
\end{aligned}
$$

The smallest and largest of these numbers are the absolute minimum and maximum, respectively, over the interval $-2 \leq x \leq 0$.

The graph below illustrates these results.

